mlx_rs/optimizers/
rmsprop.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
use std::rc::Rc;

use crate::{
    array,
    ops::{sqrt, square},
    Array,
};
use mlx_internal_macros::{generate_builder, Buildable};

use crate::{error::RmsPropBuildError, utils::get_mut_or_insert_with};

use super::*;

generate_builder! {
    /// The RMSprop optimizer [1].
    ///
    /// [1]: Tieleman, T. and Hinton, G. 2012. Lecture 6.5-rmsprop, coursera: Neural networks for
    ///     machine learning
    #[derive(Debug, Clone, Buildable)]
    #[buildable(root = crate)]
    #[builder(
        build_with = build_rmdprop,
        err = RmsPropBuildError,
        root = crate
    )]
    pub struct RmsProp {
        /// Learning rate
        #[builder(ty_override = f32)]
        pub lr: Array,

        /// The smoothing constant. Default to [`RmsProp::DEFAULT_ALPHA`] if not specified.
        #[builder(optional, ty_override = f32, default = RmsProp::DEFAULT_ALPHA)]
        pub alpha: Array,

        /// The epsilon added to the denominator to improve numerical stability. Default to
        /// [`RmsProp::DEFAULT_EPSILON`] if not specified.
        #[builder(optional, ty_override = f32, default = RmsProp::DEFAULT_EPSILON)]
        pub epsilon: Array,

        /// Inner state
        #[builder(ignore)]
        pub state: State,
    }
}

fn build_rmdprop(builder: RmsPropBuilder) -> Result<RmsProp, RmsPropBuildError> {
    let lr = builder.lr;
    let alpha = builder.alpha;
    let epsilon = builder.epsilon;

    if alpha < 0.0 {
        return Err(RmsPropBuildError::NegativeAlpha);
    }

    if epsilon < 0.0 {
        return Err(RmsPropBuildError::NegativeEpsilon);
    }

    Ok(RmsProp {
        lr: array!(lr),
        alpha: array!(alpha),
        epsilon: array!(epsilon),
        state: State::new(),
    })
}

impl RmsProp {
    /// Default alpha if not specified.
    pub const DEFAULT_ALPHA: f32 = 0.99;

    /// Default epsilon if not specified.
    pub const DEFAULT_EPSILON: f32 = 1e-8;
}

impl Optimizer for RmsProp {
    type State = State;

    fn state(&self) -> &Self::State {
        &self.state
    }

    fn state_mut(&mut self) -> &mut Self::State {
        &mut self.state
    }

    fn update_single(
        &mut self,
        key: &Rc<str>,
        gradient: &Array,
        parameter: &mut Array,
    ) -> crate::error::Result<()> {
        let state = get_mut_or_insert_with(&mut self.state, key, || array!(0.0));

        let lr = &self.lr;
        let alpha = &self.alpha;
        let eps = &self.epsilon;

        let one_minus_alpha = array!(1.0).subtract(alpha)?;
        let first_term = alpha.multiply(&*state)?;
        let second_term = one_minus_alpha.multiply(square(gradient)?)?;
        let v = first_term.add(&second_term)?;

        let num = lr.multiply(gradient)?;
        let den = sqrt(&v)?.add(eps)?;
        let new_param = parameter.subtract(num.divide(&den)?)?;

        *parameter = new_param;
        *state = v;

        Ok(())
    }
}

impl Updatable for RmsProp {
    fn updatable_states(&self) -> impl IntoIterator<Item = &Array> {
        use itertools::Itertools;

        self.state
            .iter()
            .sorted_by(|a, b| a.0.cmp(b.0))
            .map(|(_, v)| v)
    }

    fn updatable_states_mut(&mut self) -> impl IntoIterator<Item = &mut Array> {
        use itertools::Itertools;

        self.state
            .iter_mut()
            .sorted_by(|a, b| a.0.cmp(b.0))
            .map(|(_, v)| v)
    }
}

impl_updatable_for_mut_optimizer!(RmsProp);