mlx_rs/optimizers/
adam.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
use std::convert::Infallible;

use mlx_internal_macros::{generate_builder, Buildable};

use crate::{array, utils::get_mut_or_insert_with};

use super::*;

/// `(f32, f32O)`. Type alias for betas in the Adam/AdamW/Adamax optimizer builders due to
/// limitation in the `generate_builder` macro
pub type Betas = (f32, f32); // The macro right now can't handle raw tuple types

generate_builder! {
    /// The Adam optimizer.
    ///
    /// Please refer to the original paper for more details:
    ///
    /// [1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic optimization. ICLR 2015.
    #[derive(Debug, Clone, Buildable)]
    #[buildable(root = crate)]
    #[builder(
        build_with = build_adam,
        root = crate
    )]
    pub struct Adam {
        /// The learning rate
        #[builder(ty_override = f32)]
        pub lr: Array,

        /// The coefficients used for computing running averages of the gradient and its square
        ///
        /// Default to [`Adam::DEFAULT_BETAS`]
        #[builder(optional, ty_override = Betas, default = Adam::DEFAULT_BETAS)]
        pub betas: (Array, Array),

        /// The epsilon added to the denominator to improve numerical stability
        ///
        /// Default to [`Adam::DEFAULT_EPS`]
        #[builder(optional, ty_override = f32, default = Adam::DEFAULT_EPS)]
        pub eps: Array,

        /// Inner state
        #[builder(ignore)]
        pub state: State<(Array, Array)>,
    }
}

/// Builds a new [`Adam`].
fn build_adam(builder: AdamBuilder) -> Result<Adam, Infallible> {
    let lr = array!(builder.lr);
    let betas = builder.betas;
    let eps = array!(builder.eps);

    Ok(Adam {
        lr,
        betas: (array!(betas.0), array!(betas.1)),
        eps,
        state: State::new(),
    })
}

impl Adam {
    /// Default values for `betas`
    pub const DEFAULT_BETAS: (f32, f32) = (0.9, 0.999);

    /// Default value for `eps`
    pub const DEFAULT_EPS: f32 = 1e-8;
}

impl Optimizer for Adam {
    type State = State<(Array, Array)>;

    fn state(&self) -> &Self::State {
        &self.state
    }

    fn state_mut(&mut self) -> &mut Self::State {
        &mut self.state
    }

    fn update_single(
        &mut self,
        key: &Rc<str>,
        gradient: &Array,
        parameter: &mut Array,
    ) -> crate::error::Result<()> {
        let betas = &self.betas;
        let state = get_mut_or_insert_with(&mut self.state, key, || (array!(0.0), array!(0.0)));

        let (new_parameter, new_state) =
            adam_apply_single(&self.lr, betas, &self.eps, gradient, parameter, state)?;

        *state = new_state;
        *parameter = new_parameter;

        Ok(())
    }
}

// Returns (new_parameter, (new_m, new_v))
pub(super) fn adam_apply_single(
    lr: &Array,
    betas: &(Array, Array),
    eps: &Array,
    gradient: &Array,
    parameter: &Array,
    state: &(Array, Array),
) -> crate::error::Result<(Array, (Array, Array))> {
    let (b1, b2) = betas;
    let (m, v) = state;

    let one_minus_b1 = array!(1.0).subtract(b1)?;
    let one_minus_b2 = array!(1.0).subtract(b2)?;

    let new_m = b1.multiply(m)?.add(&one_minus_b1.multiply(gradient)?)?;
    let new_v = b2
        .multiply(v)?
        .add(&one_minus_b2.multiply(gradient.square()?)?)?;

    let new_parameter =
        parameter.subtract(&lr.multiply(&new_m.divide(&new_v.sqrt()?.add(eps)?)?)?)?;

    Ok((new_parameter, (new_m, new_v)))
}

impl Updatable for Adam {
    fn updatable_states(&self) -> impl IntoIterator<Item = &Array> {
        use itertools::Itertools;

        self.state
            .iter()
            .sorted_by(|a, b| a.0.cmp(b.0))
            .flat_map(|(_, (v, u))| vec![v, u])
    }

    fn updatable_states_mut(&mut self) -> impl IntoIterator<Item = &mut Array> {
        use itertools::Itertools;

        self.state
            .iter_mut()
            .sorted_by(|a, b| a.0.cmp(b.0))
            .flat_map(|(_, (v, u))| vec![v, u])
    }
}

impl_updatable_for_mut_optimizer!(Adam);