mlx_rs/ops/
convolution.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
use crate::error::Result;
use crate::utils::guard::Guarded;
use crate::utils::IntoOption;
use crate::{Array, Stream, StreamOrDevice};
use mlx_internal_macros::default_device;

/// General convolution over an input with several channels returning an error if the inputs are invalid.
///
/// - Only 1d and 2d convolutions are supported at the moment
/// - the default `groups: 1` is currently supported
///
/// # Params
///
/// - array: Input array of shape `&[N, ..., C_in]`
/// - weight: Weight array of shape `&[C_out, ..., C_in]`
/// - strides: The kernel strides. All dimensions get the same stride if only one number is specified.
/// - padding: The input padding. All dimensions get the same padding if only one number is specified.
/// - kernel_dilation: The kernel dilation. All dimensions get the same dilation if only one number is specified.
/// - input_dilation: The input dilation. All dimensions get the same dilation if only one number is specified.
/// - groups: Input feature groups
/// - flip: Flip the order in which the spatial dimensions of the weights are processed.
///   Performs the cross-correlation operator when `flip` is `false` and the convolution
///   operator otherwise.
#[default_device]
#[allow(clippy::too_many_arguments)]
pub fn conv_general_device<'a>(
    array: impl AsRef<Array>,
    weight: impl AsRef<Array>,
    strides: impl IntoOption<&'a [i32]>,
    padding: impl IntoOption<&'a [i32]>,
    kernel_dilation: impl IntoOption<&'a [i32]>,
    input_dilation: impl IntoOption<&'a [i32]>,
    groups: impl Into<Option<i32>>,
    flip: impl Into<Option<bool>>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let strides = strides.into_option().unwrap_or(&[1]);
    let padding = padding.into_option().unwrap_or(&[0]);
    let kernel_dilation = kernel_dilation.into_option().unwrap_or(&[1]);
    let input_dilation = input_dilation.into_option().unwrap_or(&[1]);
    let groups = groups.into().unwrap_or(1);
    let flip = flip.into().unwrap_or(false);

    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_conv_general(
            res,
            array.as_ref().as_ptr(),
            weight.as_ref().as_ptr(),
            strides.as_ptr(),
            strides.len(),
            padding.as_ptr(),
            padding.len(),
            padding.as_ptr(),
            padding.len(),
            kernel_dilation.as_ptr(),
            kernel_dilation.len(),
            input_dilation.as_ptr(),
            input_dilation.len(),
            groups,
            flip,
            stream.as_ref().as_ptr(),
        )
    })
}

/// 1D convolution over an input with several channels returning an error if the inputs are invalid.
///
/// Only the default `groups=1` is currently supported.
///
/// # Params
///
/// - array: input array of shape `&[N, H, C_in]`
/// - weight: weight array of shape `&[C_out, H, C_in]`
/// - stride: kernel stride. Default to 1 if not specified.
/// - padding: input padding. Default to 0 if not specified.
/// - dilation: kernel dilation. Default to 1 if not specified.
/// - groups: input feature groups. Default to 1 if not specified.
#[default_device]
pub fn conv1d_device(
    array: impl AsRef<Array>,
    weight: impl AsRef<Array>,
    stride: impl Into<Option<i32>>,
    padding: impl Into<Option<i32>>,
    dilation: impl Into<Option<i32>>,
    groups: impl Into<Option<i32>>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let stride = stride.into().unwrap_or(1);
    let padding = padding.into().unwrap_or(0);
    let dilation = dilation.into().unwrap_or(1);
    let groups = groups.into().unwrap_or(1);

    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_conv1d(
            res,
            array.as_ref().as_ptr(),
            weight.as_ref().as_ptr(),
            stride,
            padding,
            dilation,
            groups,
            stream.as_ref().as_ptr(),
        )
    })
}

/// 2D convolution over an input with several channels returning an error if the inputs are invalid.
///
/// Only the default `groups=1` is currently supported.
///
/// # Params
///
/// - array: input array of shape `[N, H, W, C_in]`
/// - weight: weight array of shape `[C_out, H, W, C_in]`
/// - stride: kernel stride. Default to (1, 1) if not specified.
/// - padding: input padding. Default to (0, 0) if not specified.
/// - dilation: kernel dilation. Default to (1, 1) if not specified.
/// - groups: input feature groups. Default to 1 if not specified.
#[default_device]
pub fn conv2d_device(
    array: impl AsRef<Array>,
    weight: impl AsRef<Array>,
    stride: impl Into<Option<(i32, i32)>>,
    padding: impl Into<Option<(i32, i32)>>,
    dilation: impl Into<Option<(i32, i32)>>,
    groups: impl Into<Option<i32>>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let stride = stride.into().unwrap_or((1, 1));
    let padding = padding.into().unwrap_or((0, 0));
    let dilation = dilation.into().unwrap_or((1, 1));
    let groups = groups.into().unwrap_or(1);

    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_conv2d(
            res,
            array.as_ref().as_ptr(),
            weight.as_ref().as_ptr(),
            stride.0,
            stride.1,
            padding.0,
            padding.1,
            dilation.0,
            dilation.1,
            groups,
            stream.as_ref().as_ptr(),
        )
    })
}

/// 3D convolution over an input with several channels.
///
/// Only the default `groups=1` is currently supported.
#[default_device]
pub fn conv3d_device(
    array: impl AsRef<Array>,
    weight: impl AsRef<Array>,
    stride: impl Into<Option<(i32, i32, i32)>>,
    padding: impl Into<Option<(i32, i32, i32)>>,
    dilation: impl Into<Option<(i32, i32, i32)>>,
    groups: impl Into<Option<i32>>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let stride = stride.into().unwrap_or((1, 1, 1));
    let padding = padding.into().unwrap_or((0, 0, 0));
    let dilation = dilation.into().unwrap_or((1, 1, 1));
    let groups = groups.into().unwrap_or(1);

    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_conv3d(
            res,
            array.as_ref().as_ptr(),
            weight.as_ref().as_ptr(),
            stride.0,
            stride.1,
            stride.2,
            padding.0,
            padding.1,
            padding.2,
            dilation.0,
            dilation.1,
            dilation.2,
            groups,
            stream.as_ref().as_ptr(),
        )
    })
}

/// 1D transposed convolution over an input with several channels.
///
/// Only the default `groups=1` is currently supported.
///
/// # Params
///
/// - array: input array of shape `[N, H, C_in]`
/// - weight: weight array of shape `[C_out, H, C_in]`
/// - stride: kernel stride. Default to 1 if not specified.
/// - padding: input padding. Default to 0 if not specified.
/// - dilation: kernel dilation. Default to 1 if not specified.
/// - groups: input feature groups. Default to 1 if not specified.
/// - stream: stream or device to evaluate on.
#[default_device]
pub fn conv_transpose1d_device(
    array: impl AsRef<Array>,
    weight: impl AsRef<Array>,
    stride: impl Into<Option<i32>>,
    padding: impl Into<Option<i32>>,
    dilation: impl Into<Option<i32>>,
    groups: impl Into<Option<i32>>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let stride = stride.into().unwrap_or(1);
    let padding = padding.into().unwrap_or(0);
    let dilation = dilation.into().unwrap_or(1);
    let groups = groups.into().unwrap_or(1);

    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_conv_transpose1d(
            res,
            array.as_ref().as_ptr(),
            weight.as_ref().as_ptr(),
            stride,
            padding,
            dilation,
            groups,
            stream.as_ref().as_ptr(),
        )
    })
}

/// 2D transposed convolution over an input with several channels.
///
/// Only the default `groups=1` is currently supported.
///
/// The numeric parameters may be given as single values:
///
/// # Params
/// - array: input array of shape `[N, H, W, C_in]`
/// - weight: weight array of shape `[C_out, H, W, C_in]`
/// - stride: kernel stride. Default to (1, 1) if not specified.
/// - padding: input padding. Default to (0, 0) if not specified.
/// - dilation: kernel dilation. Default to (1, 1) if not specified.
/// - groups: input feature groups. Default to 1 if not specified.
/// - stream: stream or device to evaluate on.
#[default_device]
pub fn conv_transpose2d_device(
    array: impl AsRef<Array>,
    weight: impl AsRef<Array>,
    stride: impl Into<Option<(i32, i32)>>,
    padding: impl Into<Option<(i32, i32)>>,
    dilation: impl Into<Option<(i32, i32)>>,
    groups: impl Into<Option<i32>>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let stride = stride.into().unwrap_or((1, 1));
    let padding = padding.into().unwrap_or((0, 0));
    let dilation = dilation.into().unwrap_or((1, 1));
    let groups = groups.into().unwrap_or(1);

    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_conv_transpose2d(
            res,
            array.as_ref().as_ptr(),
            weight.as_ref().as_ptr(),
            stride.0,
            stride.1,
            padding.0,
            padding.1,
            dilation.0,
            dilation.1,
            groups,
            stream.as_ref().as_ptr(),
        )
    })
}

/// 3D transposed convolution over an input with several channels.
///
/// Only the default `groups=1` is currently supported.
///
/// The numeric parameters may be given as single values:
///
/// # Params
/// - array: input array of shape `[N, D, H, W, C_in]`
/// - weight: weight array of shape `[C_out, D, H, W, C_in]`
/// - stride: kernel stride. Default to (1, 1, 1) if not specified.
/// - padding: input padding. Default to (0, 0, 0) if not specified.
/// - dilation: kernel dilation. Default to (1, 1, 1) if not specified.
/// - groups: input feature groups. Default to 1 if not specified.
/// - stream: stream or device to evaluate on.
#[default_device]
pub fn conv_transpose3d_device(
    array: impl AsRef<Array>,
    weight: impl AsRef<Array>,
    stride: impl Into<Option<(i32, i32, i32)>>,
    padding: impl Into<Option<(i32, i32, i32)>>,
    dilation: impl Into<Option<(i32, i32, i32)>>,
    groups: impl Into<Option<i32>>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let stride = stride.into().unwrap_or((1, 1, 1));
    let padding = padding.into().unwrap_or((0, 0, 0));
    let dilation = dilation.into().unwrap_or((1, 1, 1));
    let groups = groups.into().unwrap_or(1);

    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_conv_transpose3d(
            res,
            array.as_ref().as_ptr(),
            weight.as_ref().as_ptr(),
            stride.0,
            stride.1,
            stride.2,
            padding.0,
            padding.1,
            padding.2,
            dilation.0,
            dilation.1,
            dilation.2,
            groups,
            stream.as_ref().as_ptr(),
        )
    })
}

// TODO: Implement convolve once we have `reshape` and `slice`

#[cfg(test)]
mod tests {
    use super::*;
    use pretty_assertions::assert_eq;

    #[test]
    fn test_conv1d_complex_device() {
        // Define a 1D input with two channels
        let input_data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
        let input_array = Array::from_slice(&input_data, &[1, 5, 2]);

        // Define a 1D kernel with two input channels and two output channels
        let weight_data = [0.5, 0.0, -0.5, 1.0, 0.0, 1.5, 2.0, 0.0, -2.0, 1.5, 0.0, 1.0];
        let weight_array = Array::from_slice(&weight_data, &[2, 3, 2]);

        let result = conv1d(
            &input_array,
            &weight_array,
            Some(1), // stride
            Some(0), // padding
            Some(1), // dilation
            Some(1), // groups
        )
        .unwrap();

        let expected_output = [12.0, 8.0, 17.0, 13.0, 22.0, 18.0];
        assert_eq!(result.shape(), &[1, 3, 2]);
        assert_eq!(result.as_slice::<f32>(), &expected_output);
    }

    #[test]
    fn test_conv_transpose1d() {
        // Single channel input
        let input = Array::from_slice(&[1.0, 2.0, 3.0], &[1, 3, 1]);
        // Single input/output channel kernel
        let weights = Array::from_slice(&[1.0, 0.5], &[1, 2, 1]);

        let result = conv_transpose1d(
            &input,
            &weights,
            Some(1), // stride
            Some(0), // padding
            Some(1), // dilation
            Some(1), // groups
        )
        .unwrap();

        let expected = [1.0, 2.5, 4.0, 1.5];
        assert_eq!(result.shape(), &[1, 4, 1]);
        assert_eq!(result.as_slice::<f32>(), &expected);
    }

    #[test]
    fn test_conv2d() {
        // Define a 2x2 input with one channel (grayscale image or similar)
        let input_data = [1.0, 2.0, 3.0, 4.0];
        let input_shape = [1, 2, 2, 1]; // [N, H, W, C]
        let input_array = Array::from_slice(&input_data, &input_shape);

        // Define a 2x2 kernel with one input channel and one output channel
        let weight_data = [1.0, 0.0, 0.0, 1.0];
        let weight_shape = [1, 2, 2, 1]; // [C_out, H_k, W_k, C_in]
        let weight_array = Array::from_slice(&weight_data, &weight_shape);

        // Perform the convolution with no padding and stride of 1
        let result = conv2d(
            &input_array,
            &weight_array,
            Some((1, 1)), // stride
            Some((0, 0)), // padding
            Some((1, 1)), // dilation
            Some(1),      // groups
        )
        .unwrap();

        // Expected result is the convolution of a 2x2 filter over a 2x2 input with valid padding, resulting in a single output value
        let expected_output = 1.0 * 1.0 + 2.0 * 0.0 + 3.0 * 0.0 + 4.0 * 1.0; // = 1*1 + 4*1 = 5
        assert_eq!(result.as_slice::<f32>(), &[expected_output]);
    }

    #[test]
    fn test_conv_transpose2d() {
        // 2x2 single channel input
        let input = Array::from_slice(&[1.0, 2.0, 3.0, 4.0], &[1, 2, 2, 1]);
        // 2x2 single channel kernel (identity-like)
        let weights = Array::from_slice(&[1.0, 0.0, 0.0, 1.0], &[1, 2, 2, 1]);

        let result = conv_transpose2d(
            &input,
            &weights,
            Some((1, 1)), // stride
            Some((0, 0)), // padding
            Some((1, 1)), // dilation
            Some(1),      // groups
        )
        .unwrap();

        let expected = [1.0, 2.0, 0.0, 3.0, 5.0, 2.0, 0.0, 3.0, 4.0];
        assert_eq!(result.shape(), &[1, 3, 3, 1]);
        assert_eq!(result.as_slice::<f32>(), &expected);
    }

    #[test]
    fn test_conv3d() {
        // Define a 2x2x2 input with one channel
        let input_data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
        let input_shape = [1, 2, 2, 2, 1]; // [N, D, H, W, C]
        let input_array = Array::from_slice(&input_data, &input_shape);

        // Define a 2x2x2 kernel with one input channel and one output channel
        let weight_data = [1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0];
        let weight_shape = [1, 2, 2, 2, 1]; // [C_out, D_k, H_k, W_k, C_in]
        let weight_array = Array::from_slice(&weight_data, &weight_shape);

        // Perform the convolution with no padding and stride of 1
        let result = conv3d(
            &input_array,
            &weight_array,
            Some((1, 1, 1)), // stride
            Some((0, 0, 0)), // padding
            Some((1, 1, 1)), // dilation
            Some(1),         // groups
        )
        .unwrap();

        // Expected result is the convolution of a 2x2x2 filter over a 2x2x2 input with valid padding, resulting in a single output value
        let expected_output = 1.0 * 1.0
            + 2.0 * 0.0
            + 3.0 * 0.0
            + 4.0 * 1.0
            + 5.0 * 0.0
            + 6.0 * 1.0
            + 7.0 * 1.0
            + 8.0 * 0.0; // = 1*1 + 4*1 + 6*1 + 7*1 = 18
        assert_eq!(result.as_slice::<f32>(), &[expected_output]);
    }

    #[test]
    fn test_conv_transpose3d() {
        // 2x2x2 single channel input
        let input = Array::from_slice(&[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], &[1, 2, 2, 2, 1]);
        // 2x2x2 single channel kernel
        let weights =
            Array::from_slice(&[1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0], &[1, 2, 2, 2, 1]);

        let result = conv_transpose3d(
            &input,
            &weights,
            Some((1, 1, 1)), // stride
            Some((0, 0, 0)), // padding
            Some((1, 1, 1)), // dilation
            Some(1),         // groups
        )
        .unwrap();

        assert_eq!(result.shape(), &[1, 3, 3, 3, 1]);
    }

    #[test]
    fn test_conv_wrong_dimensions() {
        let input_data = [1.0, 2.0, 3.0, 4.0];
        let input_shape = [1, 2, 2, 1]; // [N, H, W, C]
        let input_array = Array::from_slice(&input_data, &input_shape);

        let weight_data = [1.0, 0.0, 0.0, 1.0];
        let weight_shape = [1, 2, 2]; // [C_out, H_k, W_k]
        let weight_array = Array::from_slice(&weight_data, &weight_shape);

        let result = conv2d(
            &input_array,
            &weight_array,
            Some((1, 1)), // stride
            Some((0, 0)), // padding
            Some((1, 1)), // dilation
            Some(1),      // groups
        );

        assert!(result.is_err());
    }

    #[test]
    fn test_conv_invalid_group_size() {
        let input_data = [1.0, 2.0, 3.0, 4.0];
        let input_shape = [1, 2, 2, 1]; // [N, H, W, C]
        let input_array = Array::from_slice(&input_data, &input_shape);

        let weight_data = [1.0, 0.0, 0.0, 1.0];
        let weight_shape = [1, 2, 2, 1]; // [C_out, H_k, W_k, C_in]
        let weight_array = Array::from_slice(&weight_data, &weight_shape);

        let result = conv2d(
            &input_array,
            &weight_array,
            Some((1, 1)), // stride
            Some((0, 0)), // padding
            Some((1, 1)), // dilation
            Some(2),      // groups
        );

        assert!(result.is_err());
    }

    #[test]
    fn test_conv_non_float() {
        let input_data = [1, 2, 3, 4];
        let input_shape = [1, 2, 2, 1]; // [N, H, W, C]
        let input_array = Array::from_slice(&input_data, &input_shape);

        let weight_data = [1, 0, 0, 1];
        let weight_shape = [1, 2, 2, 1]; // [C_out, H_k, W_k, C_in]
        let weight_array = Array::from_slice(&weight_data, &weight_shape);

        let result = conv2d(
            &input_array,
            &weight_array,
            Some((1, 1)), // stride
            Some((0, 0)), // padding
            Some((1, 1)), // dilation
            Some(1),      // groups
        );

        assert!(result.is_err());
    }
}