mlx_rs/nn/
container.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
use std::borrow::Cow;

use crate::module::{Module, UnaryModule};
use crate::{error::Exception, Array};
use mlx_macros::ModuleParameters;

/// Marker trait for items that can be used in a `Sequential` module.
///
/// It is implemented for all types that implement [`Module`] and [`std::fmt::Debug`].
pub trait SequentialModuleItem: UnaryModule + std::fmt::Debug {}

impl<T> SequentialModuleItem for T where T: UnaryModule + std::fmt::Debug {}

/// A sequential layer.
///
/// It calls each layer in sequence.
#[derive(Debug, ModuleParameters)]
#[module(root = crate)]
pub struct Sequential<Err = Exception> {
    /// The layers to be called in sequence.
    #[param]
    pub layers: Vec<Box<dyn SequentialModuleItem<Error = Err>>>,
}

impl Module<&Array> for Sequential {
    type Error = Exception;
    type Output = Array;

    fn forward(&mut self, x: &Array) -> Result<Array, Self::Error> {
        let mut x = Cow::Borrowed(x);

        for layer in &mut self.layers {
            x = Cow::Owned(layer.forward(x.as_ref())?);
        }

        match x {
            Cow::Owned(array) => Ok(array),
            Cow::Borrowed(array) => Ok(array.clone()),
        }
    }

    fn training_mode(&mut self, mode: bool) {
        self.layers
            .iter_mut()
            .for_each(|layer| layer.training_mode(mode));
    }
}

impl<Err> Default for Sequential<Err> {
    fn default() -> Self {
        Self::new()
    }
}

impl<Err> Sequential<Err> {
    /// Creates a new [`Sequential`] module.
    pub fn new() -> Self {
        Self { layers: Vec::new() }
    }

    /// Appends a layer to the sequential module.
    pub fn append<M>(mut self, layer: M) -> Self
    where
        M: UnaryModule<Error = Err> + std::fmt::Debug + 'static,
    {
        self.layers.push(Box::new(layer));
        self
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        array,
        builder::Builder,
        module::ModuleParameters,
        nn::{self, Linear},
        ops::zeros,
        optimizers::{Optimizer, Sgd},
        random::uniform,
        transforms::{eval, eval_params},
    };

    use crate::losses::{LossReduction, MseLossBuilder};

    use super::*;

    #[test]
    fn test_sequential_linear_param_len() {
        let model = Sequential::new()
            .append(Linear::new(2, 3).unwrap())
            .append(Linear::new(3, 1).unwrap());

        let params = model.parameters().flatten();
        assert_eq!(params.len(), 4);
    }

    #[test]
    fn test_sequential_linear_param_update() {
        let mut model = Sequential::new()
            .append(Linear::new(2, 3).unwrap())
            .append(Linear::new(3, 1).unwrap());

        model
            .trainable_parameters()
            .flatten()
            .iter()
            .for_each(|(key, value)| {
                println!("{}: {:?}", key, value);
            });

        let mut params = model.parameters_mut().flatten();

        // Check that the initial weights are not all zeros
        assert!(
            params["layers.0.weight"]
                .abs()
                .unwrap()
                .sum(None, None)
                .unwrap()
                .item::<f32>()
                - 0.0
                > 1e-6
        );

        // Update the weight with zeros
        let shape = params["layers.0.weight"].shape();
        let zeros = zeros::<f32>(shape).unwrap();
        let value_mut = params.get_mut("layers.0.weight").unwrap();
        **value_mut = zeros;

        // Check that the weight is now all zeros
        let first_layer = &model.layers[0];
        let linear_params = first_layer.parameters().flatten();
        let weight = linear_params["weight"];
        assert!(weight.abs().unwrap().sum(None, None).unwrap().item::<f32>() - 0.0 < 1e-6);
    }

    #[test]
    fn test_sgd_update_sequential_linear_params() {
        let lr = 1e-2;
        let input_dim = 2;
        let hidden_dim = 3;
        let output_dim = 2;

        // Test using a simple linear equation
        let m = array!(0.25);
        let b = array!(0.75);

        let mut model = Sequential::new()
            .append(Linear::new(input_dim, hidden_dim).unwrap())
            .append(Linear::new(hidden_dim, output_dim).unwrap());

        let loss = MseLossBuilder::new()
            .reduction(LossReduction::Mean)
            .build()
            .unwrap();
        let loss_fn = |model: &mut Sequential, (x, y): (&Array, &Array)| {
            let y_pred = model.forward(x)?;
            loss.apply(&y_pred, y)
        };

        let mut lg = nn::value_and_grad(loss_fn);

        let mut optimizer = Sgd::new(lr);

        let mut losses = vec![];
        for _ in 0..100 {
            // Generate random data
            let x = uniform::<_, f32>(-5.0, 5.0, &[input_dim], None).unwrap();
            let y = &m * &x + &b;

            eval([&x, &y]).unwrap();

            // Compute the loss and gradients and update the model
            let (loss, grads) = lg(&mut model, (&x, &y)).unwrap();
            optimizer.update(&mut model, grads).unwrap();

            eval_params(model.parameters()).unwrap();

            losses.push(loss.item::<f32>());
        }

        // Check that it converges
        assert!(
            losses[0] > losses[losses.len() - 1],
            "Not converging loss: {:?}",
            losses
        );
    }
}