mlx_rs/module/
module.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
use std::{borrow::Borrow, collections::HashMap, hash::Hash, path::Path, rc::Rc};

use crate::{
    error::{Exception, IoError},
    nested::{NestedHashMap, NestedValue},
    Array,
};

/// Type alias for owned module parameters.
pub type ModuleParam = NestedHashMap<Rc<str>, Array>;

/// Type alias for borrowed module parameters.
pub type ModuleParamRef<'a> = NestedHashMap<Rc<str>, &'a Array>;

/// Type alias for mutably borrowed module parameters.
pub type ModuleParamMut<'a> = NestedHashMap<Rc<str>, &'a mut Array>;

/// Type alias for flattened module parameters.
pub type FlattenedModuleParam = HashMap<Rc<str>, Array>;

/// Type alias for borrowed flattened module parameters.
pub type FlattenedModuleParamRef<'a> = HashMap<Rc<str>, &'a Array>;

/// Type alias for mutably borrowed flattened module parameters.
pub type FlattenedModuleParamMut<'a> = HashMap<Rc<str>, &'a mut Array>;

/// Trait for a neural network module.
pub trait Module<Input>: ModuleParameters + std::fmt::Debug {
    /// Output type of the module.
    type Output;

    /// Error type for the module.
    type Error: std::error::Error;

    /// Forward pass of the module.
    fn forward(&mut self, input: Input) -> Result<Self::Output, Self::Error>;

    /// Set whether the module is in training mode.
    ///
    /// Training mode only applies to certain layers. For example, dropout layers applies a random
    /// mask in training mode, but is the identity in evaluation mode. Implementations of nested
    /// modules should propagate the training mode to all child modules.
    fn training_mode(&mut self, mode: bool);
}

/// Marker trait for a unary neural network module.
///
/// This trait should not be implemented directly. Instead, implement [`Module`] with `Args` as a
/// reference to the input.
pub trait UnaryModule: for<'a> Module<&'a Array, Output = Array> {}

impl<T> UnaryModule for T where T: for<'a> Module<&'a Array, Output = Array> {}

/// Trait for accessing and updating module parameters.
pub trait ModuleParameters {
    /// Get references to the module parameters.
    fn parameters(&self) -> ModuleParamRef<'_>;

    /// Get mutable references to the module parameters.
    fn parameters_mut(&mut self) -> ModuleParamMut<'_>;

    /// Get references to the trainable parameters. A parameter is trainable if it is NOT frozen.
    fn trainable_parameters(&self) -> ModuleParamRef<'_>;

    /// Update the module parameters.
    fn update(&mut self, parameters: ModuleParam) {
        let flattened_parameters = parameters.flatten();
        update_parameters(self, flattened_parameters)
    }

    /// Update the module parameters from a flattened representation.
    fn update_flattened(&mut self, flattened_parameters: FlattenedModuleParam) {
        update_parameters(self, flattened_parameters)
    }

    /// Freeze all parameters in the module.
    fn freeze_parameters(&mut self, recursive: bool);

    /// Unfreeze all parameters in the module.
    fn unfreeze_parameters(&mut self, recursive: bool);

    /// Check if all parameters in the module are frozen. Returns `None` if there are no parameters.
    fn all_frozen(&self) -> Option<bool>;

    /// Check if any parameter in the module is frozen. Returns `None` if there are no parameters.
    fn any_frozen(&self) -> Option<bool>;
}

/// Update the module parameters from an iterator of (key, value) tuples.
pub fn update_parameters<M, I, Q>(module: &mut M, parameters: I)
where
    M: ModuleParameters + ?Sized,
    I: IntoIterator<Item = (Q, Array)>,
    Q: Hash + Eq,
    Rc<str>: Borrow<Q>,
{
    let mut flattened_self_parameters = module.parameters_mut().flatten();

    for (key, value) in parameters {
        if let Some(self_value) = flattened_self_parameters.get_mut(&key) {
            **self_value = value;
        }
    }
}

impl<T> ModuleParameters for &'_ mut T
where
    T: ModuleParameters + ?Sized,
{
    fn parameters(&self) -> ModuleParamRef<'_> {
        (**self).parameters()
    }

    fn parameters_mut(&mut self) -> ModuleParamMut<'_> {
        (**self).parameters_mut()
    }

    fn trainable_parameters(&self) -> ModuleParamRef<'_> {
        (**self).trainable_parameters()
    }

    fn freeze_parameters(&mut self, recursive: bool) {
        (**self).freeze_parameters(recursive);
    }

    fn unfreeze_parameters(&mut self, recursive: bool) {
        (**self).unfreeze_parameters(recursive);
    }

    fn all_frozen(&self) -> Option<bool> {
        (**self).all_frozen()
    }

    fn any_frozen(&self) -> Option<bool> {
        (**self).any_frozen()
    }
}

impl<T> ModuleParameters for Box<T>
where
    T: ModuleParameters + ?Sized,
{
    fn parameters(&self) -> ModuleParamRef<'_> {
        self.as_ref().parameters()
    }

    fn parameters_mut(&mut self) -> ModuleParamMut<'_> {
        self.as_mut().parameters_mut()
    }

    fn trainable_parameters(&self) -> ModuleParamRef<'_> {
        self.as_ref().trainable_parameters()
    }

    fn freeze_parameters(&mut self, recursive: bool) {
        self.as_mut().freeze_parameters(recursive);
    }

    fn unfreeze_parameters(&mut self, recursive: bool) {
        self.as_mut().unfreeze_parameters(recursive);
    }

    fn all_frozen(&self) -> Option<bool> {
        self.as_ref().all_frozen()
    }

    fn any_frozen(&self) -> Option<bool> {
        self.as_ref().any_frozen()
    }
}

impl<T> ModuleParameters for Vec<T>
where
    T: ModuleParameters,
{
    fn parameters(&self) -> ModuleParamRef<'_> {
        let mut parameters = NestedHashMap::new();
        self.iter().enumerate().for_each(|(i, module)| {
            let value = module.parameters();
            parameters.insert(Rc::from(i.to_string()), NestedValue::Map(value.entries));
        });
        parameters
    }

    fn parameters_mut(&mut self) -> ModuleParamMut<'_> {
        let mut parameters = NestedHashMap::new();
        self.iter_mut().enumerate().for_each(|(i, module)| {
            let value = module.parameters_mut();
            parameters.insert(Rc::from(i.to_string()), NestedValue::Map(value.entries));
        });
        parameters
    }

    fn trainable_parameters(&self) -> ModuleParamRef<'_> {
        let mut parameters = NestedHashMap::new();
        self.iter().enumerate().for_each(|(i, module)| {
            let value = module.trainable_parameters();
            parameters.insert(Rc::from(i.to_string()), NestedValue::Map(value.entries));
        });
        parameters
    }

    fn freeze_parameters(&mut self, recursive: bool) {
        self.iter_mut().for_each(|module| {
            module.freeze_parameters(recursive);
        });
    }

    fn unfreeze_parameters(&mut self, recursive: bool) {
        self.iter_mut().for_each(|module| {
            module.unfreeze_parameters(recursive);
        });
    }

    fn all_frozen(&self) -> Option<bool> {
        let mut result = None;
        for module in self.iter() {
            match module.all_frozen() {
                Some(true) => result = Some(true),
                Some(false) => return Some(false),
                None => {}
            }
        }
        result
    }

    fn any_frozen(&self) -> Option<bool> {
        let mut result = None;
        for module in self.iter() {
            match module.any_frozen() {
                Some(true) => return Some(true),
                Some(false) => result = Some(false),
                None => {}
            }
        }
        result
    }
}

/// Extension trait for `ModuleParameters`. This is implemented for all types that implement
/// `ModuleParameters`.
pub trait ModuleParametersExt: ModuleParameters {
    /// Evaluate the module parameters.
    fn eval(&self) -> Result<(), Exception> {
        crate::transforms::eval_params(self.parameters())
    }

    /// Load module parameters from a `safetensors` file.
    fn load_safetensors(&mut self, path: impl AsRef<Path>) -> Result<(), IoError> {
        let loaded = Array::load_safetensors(path)?;

        // Load the parameters
        let mut params = self.parameters_mut().flatten();
        for (key, value) in loaded {
            if let Some(param) = params.get_mut(&*key) {
                **param = value;
            }
        }

        // Loading is lazy, eval after loading
        self.eval()?;

        Ok(())
    }

    /// Save module parameters to a file in `safetensors` format.
    fn save_safetensors(&self, path: impl AsRef<Path>) -> Result<(), IoError> {
        let params = self.parameters().flatten();
        Array::save_safetensors(params, None, path)?;
        Ok(())
    }
}

impl<T: ModuleParameters> ModuleParametersExt for T {}