mlx_rs/
linalg.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
//! Linear algebra operations.

use crate::error::{Exception, Result};
use crate::utils::guard::Guarded;
use crate::utils::{IntoOption, VectorArray};
use crate::{Array, Stream, StreamOrDevice};
use mlx_internal_macros::default_device;
use smallvec::SmallVec;
use std::f64;
use std::ffi::CString;

/// Order of the norm
///
/// See [`norm`] for more details.
#[derive(Debug, Clone, Copy)]
pub enum Ord<'a> {
    /// String representation of the order
    Str(&'a str),

    /// Order of the norm
    P(f64),
}

impl Default for Ord<'_> {
    fn default() -> Self {
        Ord::Str("fro")
    }
}

impl std::fmt::Display for Ord<'_> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Ord::Str(s) => write!(f, "{}", s),
            Ord::P(p) => write!(f, "{}", p),
        }
    }
}

impl<'a> From<&'a str> for Ord<'a> {
    fn from(value: &'a str) -> Self {
        Ord::Str(value)
    }
}

impl From<f64> for Ord<'_> {
    fn from(value: f64) -> Self {
        Ord::P(value)
    }
}

impl<'a> IntoOption<Ord<'a>> for &'a str {
    fn into_option(self) -> Option<Ord<'a>> {
        Some(Ord::Str(self))
    }
}

impl<'a> IntoOption<Ord<'a>> for f64 {
    fn into_option(self) -> Option<Ord<'a>> {
        Some(Ord::P(self))
    }
}

/// Compute p-norm of an [`Array`]
#[default_device]
pub fn norm_p_device<'a>(
    array: impl AsRef<Array>,
    ord: f64,
    axes: impl IntoOption<&'a [i32]>,
    keep_dims: impl Into<Option<bool>>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let keep_dims = keep_dims.into().unwrap_or(false);

    match axes.into_option() {
        Some(axes) => Array::try_from_op(|res| unsafe {
            mlx_sys::mlx_linalg_norm_p(
                res,
                array.as_ref().as_ptr(),
                ord,
                axes.as_ptr(),
                axes.len(),
                keep_dims,
                stream.as_ref().as_ptr(),
            )
        }),
        None => Array::try_from_op(|res| unsafe {
            mlx_sys::mlx_linalg_norm_p(
                res,
                array.as_ref().as_ptr(),
                ord,
                std::ptr::null(),
                0,
                keep_dims,
                stream.as_ref().as_ptr(),
            )
        }),
    }
}

/// Matrix or vector norm.
#[default_device]
pub fn norm_ord_device<'a>(
    array: impl AsRef<Array>,
    ord: &'a str,
    axes: impl IntoOption<&'a [i32]>,
    keep_dims: impl Into<Option<bool>>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let ord = CString::new(ord).map_err(|e| Exception::custom(format!("{}", e)))?;
    let keep_dims = keep_dims.into().unwrap_or(false);

    match axes.into_option() {
        Some(axes) => Array::try_from_op(|res| unsafe {
            mlx_sys::mlx_linalg_norm_ord(
                res,
                array.as_ref().as_ptr(),
                ord.as_ptr(),
                axes.as_ptr(),
                axes.len(),
                keep_dims,
                stream.as_ref().as_ptr(),
            )
        }),
        None => Array::try_from_op(|res| unsafe {
            mlx_sys::mlx_linalg_norm_ord(
                res,
                array.as_ref().as_ptr(),
                ord.as_ptr(),
                std::ptr::null(),
                0,
                keep_dims,
                stream.as_ref().as_ptr(),
            )
        }),
    }
}

/// Matrix or vector norm.
///
/// For values of `ord < 1`, the result is, strictly speaking, not a
/// mathematical norm, but it may still be useful for various numerical
/// purposes.
///
/// The following norms can be calculated:
///
/// ord   | norm for matrices            | norm for vectors
/// ----- | ---------------------------- | --------------------------
/// None  | Frobenius norm               | 2-norm
/// 'fro' | Frobenius norm               | --
/// inf   | max(sum(abs(x), axis-1))     | max(abs(x))
/// -inf  | min(sum(abs(x), axis-1))     | min(abs(x))
/// 0     | --                           | sum(x !- 0)
/// 1     | max(sum(abs(x), axis-0))     | as below
/// -1    | min(sum(abs(x), axis-0))     | as below
/// 2     | 2-norm (largest sing. value) | as below
/// -2    | smallest singular value      | as below
/// other | --                           | sum(abs(x)**ord)**(1./ord)
///
/// > Nuclear norm and norms based on singular values are not yet implemented.
///
/// The Frobenius norm is given by G. H. Golub and C. F. Van Loan, *Matrix Computations*,
///        Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
///
/// The nuclear norm is the sum of the singular values.
///
/// Both the Frobenius and nuclear norm orders are only defined for
/// matrices and produce a fatal error when `array.ndim != 2`
///
/// # Params
///
/// - `array`: input array
/// - `ord`: order of the norm, see table
/// - `axes`: axes that hold 2d matrices
/// - `keep_dims`: if `true` the axes which are normed over are left in the result as dimensions
///   with size one
#[default_device]
pub fn norm_device<'a>(
    array: impl AsRef<Array>,
    ord: impl IntoOption<Ord<'a>>,
    axes: impl IntoOption<&'a [i32]>,
    keep_dims: impl Into<Option<bool>>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let ord = ord.into_option();
    let axes = axes.into_option();
    let keep_dims = keep_dims.into().unwrap_or(false);

    match (ord, axes) {
        // If axis and ord are both unspecified, computes the 2-norm of flatten(x).
        (None, None) => {
            let axes_ptr = std::ptr::null(); // mlx-c already handles the case where axes is null
            Array::try_from_op(|res| unsafe {
                mlx_sys::mlx_linalg_norm(
                    res,
                    array.as_ref().as_ptr(),
                    axes_ptr,
                    0,
                    keep_dims,
                    stream.as_ref().as_ptr(),
                )
            })
        }
        // If axis is not provided but ord is, then x must be either 1D or 2D.
        //
        // Frobenius norm is only supported for matrices
        (Some(Ord::Str(ord)), None) => norm_ord_device(array, ord, axes, keep_dims, stream),
        (Some(Ord::P(p)), None) => norm_p_device(array, p, axes, keep_dims, stream),
        // If axis is provided, but ord is not, then the 2-norm (or Frobenius norm for matrices) is
        // computed along the given axes. At most 2 axes can be specified.
        (None, Some(axes)) => Array::try_from_op(|res| unsafe {
            mlx_sys::mlx_linalg_norm(
                res,
                array.as_ref().as_ptr(),
                axes.as_ptr(),
                axes.len(),
                keep_dims,
                stream.as_ref().as_ptr(),
            )
        }),
        // If both axis and ord are provided, then the corresponding matrix or vector
        // norm is computed. At most 2 axes can be specified.
        (Some(Ord::Str(ord)), Some(axes)) => norm_ord_device(array, ord, axes, keep_dims, stream),
        (Some(Ord::P(p)), Some(axes)) => norm_p_device(array, p, axes, keep_dims, stream),
    }
}

/// The QR factorization of the input matrix. Returns an error if the input is not valid.
///
/// This function supports arrays with at least 2 dimensions. The matrices which are factorized are
/// assumed to be in the last two dimensions of the input.
///
/// Evaluation on the GPU is not yet implemented.
///
/// # Params
///
/// - `array`: input array
///
/// # Example
///
/// ```rust
/// use mlx_rs::{Array, StreamOrDevice, linalg::*};
///
/// let a = Array::from_slice(&[2.0f32, 3.0, 1.0, 2.0], &[2, 2]);
///
/// let (q, r) = qr_device(&a, StreamOrDevice::cpu()).unwrap();
///
/// let q_expected = Array::from_slice(&[-0.894427, -0.447214, -0.447214, 0.894427], &[2, 2]);
/// let r_expected = Array::from_slice(&[-2.23607, -3.57771, 0.0, 0.447214], &[2, 2]);
///
/// assert!(q.all_close(&q_expected, None, None, None).unwrap().item::<bool>());
/// assert!(r.all_close(&r_expected, None, None, None).unwrap().item::<bool>());
/// ```
#[default_device]
pub fn qr_device(a: impl AsRef<Array>, stream: impl AsRef<Stream>) -> Result<(Array, Array)> {
    <(Array, Array)>::try_from_op(|(res_0, res_1)| unsafe {
        mlx_sys::mlx_linalg_qr(res_0, res_1, a.as_ref().as_ptr(), stream.as_ref().as_ptr())
    })
}

/// The Singular Value Decomposition (SVD) of the input matrix. Returns an error if the input is not
/// valid.
///
/// This function supports arrays with at least 2 dimensions. When the input has more than two
/// dimensions, the function iterates over all indices of the first a.ndim - 2 dimensions and for
/// each combination SVD is applied to the last two indices.
///
/// Evaluation on the GPU is not yet implemented.
///
/// # Params
///
/// - `array`: input array
///
/// # Example
///
/// ```rust
/// use mlx_rs::{Array, StreamOrDevice, linalg::*};
///
/// let a = Array::from_slice(&[1.0f32, 2.0, 3.0, 4.0], &[2, 2]);
/// let (u, s, vt) = svd_device(&a, StreamOrDevice::cpu()).unwrap();
/// let u_expected = Array::from_slice(&[-0.404554, 0.914514, -0.914514, -0.404554], &[2, 2]);
/// let s_expected = Array::from_slice(&[5.46499, 0.365966], &[2]);
/// let vt_expected = Array::from_slice(&[-0.576048, -0.817416, -0.817415, 0.576048], &[2, 2]);
/// assert!(u.all_close(&u_expected, None, None, None).unwrap().item::<bool>());
/// assert!(s.all_close(&s_expected, None, None, None).unwrap().item::<bool>());
/// assert!(vt.all_close(&vt_expected, None, None, None).unwrap().item::<bool>());
/// ```
#[default_device]
pub fn svd_device(
    array: impl AsRef<Array>,
    stream: impl AsRef<Stream>,
) -> Result<(Array, Array, Array)> {
    let v = VectorArray::try_from_op(|res| unsafe {
        mlx_sys::mlx_linalg_svd(res, array.as_ref().as_ptr(), stream.as_ref().as_ptr())
    })?;

    let vals: SmallVec<[Array; 3]> = v.try_into_values()?;
    let mut iter = vals.into_iter();
    let u = iter.next().unwrap();
    let s = iter.next().unwrap();
    let vt = iter.next().unwrap();

    Ok((u, s, vt))
}

/// Compute the inverse of a square matrix. Returns an error if the input is not valid.
///
/// This function supports arrays with at least 2 dimensions. When the input has more than two
/// dimensions, the inverse is computed for each matrix in the last two dimensions of `a`.
///
/// Evaluation on the GPU is not yet implemented.
///
/// # Params
///
/// - `a`: input array
///
/// # Example
///
/// ```rust
/// use mlx_rs::{Array, StreamOrDevice, linalg::*};
///
/// let a = Array::from_slice(&[1.0f32, 2.0, 3.0, 4.0], &[2, 2]);
/// let a_inv = inv_device(&a, StreamOrDevice::cpu()).unwrap();
/// let expected = Array::from_slice(&[-2.0, 1.0, 1.5, -0.5], &[2, 2]);
/// assert!(a_inv.all_close(&expected, None, None, None).unwrap().item::<bool>());
/// ```
#[default_device]
pub fn inv_device(a: impl AsRef<Array>, stream: impl AsRef<Stream>) -> Result<Array> {
    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_linalg_inv(res, a.as_ref().as_ptr(), stream.as_ref().as_ptr())
    })
}

/// Compute the Cholesky decomposition of a real symmetric positive semi-definite matrix.
///
/// This function supports arrays with at least 2 dimensions. When the input has more than two
/// dimensions, the Cholesky decomposition is computed for each matrix in the last two dimensions of
/// `a`.
///
/// If the input matrix is not symmetric positive semi-definite, behaviour is undefined.
///
/// # Params
///
/// - `a`: input array
/// - `upper`: If `true`, return the upper triangular Cholesky factor. If `false`, return the lower
///   triangular Cholesky factor. Default: `false`.
#[default_device]
pub fn cholesky_device(
    a: impl AsRef<Array>,
    upper: Option<bool>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let upper = upper.unwrap_or(false);
    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_linalg_cholesky(res, a.as_ref().as_ptr(), upper, stream.as_ref().as_ptr())
    })
}

/// Compute the inverse of a real symmetric positive semi-definite matrix using it’s Cholesky decomposition.
///
/// Please see the python documentation for more details.
#[default_device]
pub fn cholesky_inv_device(
    a: impl AsRef<Array>,
    upper: Option<bool>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let upper = upper.unwrap_or(false);
    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_linalg_cholesky_inv(res, a.as_ref().as_ptr(), upper, stream.as_ref().as_ptr())
    })
}

/// Compute the cross product of two arrays along a specified axis.
///
/// The cross product is defined for arrays with size 2 or 3 in the specified axis. If the size is 2
/// then the third value is assumed to be zero.
#[default_device]
pub fn cross_device(
    a: impl AsRef<Array>,
    b: impl AsRef<Array>,
    axis: Option<i32>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let axis = axis.unwrap_or(-1);
    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_linalg_cross(
            res,
            a.as_ref().as_ptr(),
            b.as_ref().as_ptr(),
            axis,
            stream.as_ref().as_ptr(),
        )
    })
}

/// Compute the eigenvalues and eigenvectors of a complex Hermitian or real symmetric matrix.
///
/// This function supports arrays with at least 2 dimensions. When the input has more than two
/// dimensions, the eigenvalues and eigenvectors are computed for each matrix in the last two
/// dimensions.
#[default_device]
pub fn eigh_device(
    a: impl AsRef<Array>,
    uplo: Option<&str>,
    stream: impl AsRef<Stream>,
) -> Result<(Array, Array)> {
    let a = a.as_ref();
    let uplo =
        CString::new(uplo.unwrap_or("L")).map_err(|e| Exception::custom(format!("{}", e)))?;

    <(Array, Array) as Guarded>::try_from_op(|(res_0, res_1)| unsafe {
        mlx_sys::mlx_linalg_eigh(
            res_0,
            res_1,
            a.as_ptr(),
            uplo.as_ptr(),
            stream.as_ref().as_ptr(),
        )
    })
}

/// Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
///
/// This function supports arrays with at least 2 dimensions. When the input has more than two
/// dimensions, the eigenvalues are computed for each matrix in the last two dimensions.
#[default_device]
pub fn eigvalsh_device(
    a: impl AsRef<Array>,
    uplo: Option<&str>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let a = a.as_ref();
    let uplo =
        CString::new(uplo.unwrap_or("L")).map_err(|e| Exception::custom(format!("{}", e)))?;
    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_linalg_eigvalsh(res, a.as_ptr(), uplo.as_ptr(), stream.as_ref().as_ptr())
    })
}

/// Compute the (Moore-Penrose) pseudo-inverse of a matrix.
#[default_device]
pub fn pinv_device(a: impl AsRef<Array>, stream: impl AsRef<Stream>) -> Result<Array> {
    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_linalg_pinv(res, a.as_ref().as_ptr(), stream.as_ref().as_ptr())
    })
}

/// Compute the inverse of a triangular square matrix.
///
/// This function supports arrays with at least 2 dimensions. When the input has more than two
/// dimensions, the inverse is computed for each matrix in the last two dimensions of a.
#[default_device]
pub fn tri_inv_device(
    a: impl AsRef<Array>,
    upper: Option<bool>,
    stream: impl AsRef<Stream>,
) -> Result<Array> {
    let upper = upper.unwrap_or(false);
    Array::try_from_op(|res| unsafe {
        mlx_sys::mlx_linalg_tri_inv(res, a.as_ref().as_ptr(), upper, stream.as_ref().as_ptr())
    })
}

#[cfg(test)]
mod tests {
    use float_eq::assert_float_eq;

    use super::*;

    // The tests below are adapted from the swift bindings tests
    // and they are not exhaustive. Additional tests should be added
    // to cover the error cases

    #[test]
    fn test_norm_no_axes() {
        let a = Array::from_iter(0..9, &[9]) - 4;
        let b = a.reshape(&[3, 3]).unwrap();

        assert_float_eq!(
            norm(&a, None, None, None).unwrap().item::<f32>(),
            7.74597,
            abs <= 0.001
        );
        assert_float_eq!(
            norm(&b, None, None, None).unwrap().item::<f32>(),
            7.74597,
            abs <= 0.001
        );

        assert_float_eq!(
            norm(&b, "fro", None, None).unwrap().item::<f32>(),
            7.74597,
            abs <= 0.001
        );

        assert_float_eq!(
            norm(&a, f64::INFINITY, None, None).unwrap().item::<f32>(),
            4.0,
            abs <= 0.001
        );
        assert_float_eq!(
            norm(&b, f64::INFINITY, None, None).unwrap().item::<f32>(),
            9.0,
            abs <= 0.001
        );

        assert_float_eq!(
            norm(&a, f64::NEG_INFINITY, None, None)
                .unwrap()
                .item::<f32>(),
            0.0,
            abs <= 0.001
        );
        assert_float_eq!(
            norm(&b, f64::NEG_INFINITY, None, None)
                .unwrap()
                .item::<f32>(),
            2.0,
            abs <= 0.001
        );

        assert_float_eq!(
            norm(&a, 1.0, None, None).unwrap().item::<f32>(),
            20.0,
            abs <= 0.001
        );
        assert_float_eq!(
            norm(&b, 1.0, None, None).unwrap().item::<f32>(),
            7.0,
            abs <= 0.001
        );

        assert_float_eq!(
            norm(&a, -1.0, None, None).unwrap().item::<f32>(),
            0.0,
            abs <= 0.001
        );
        assert_float_eq!(
            norm(&b, -1.0, None, None).unwrap().item::<f32>(),
            6.0,
            abs <= 0.001
        );
    }

    #[test]
    fn test_norm_axis() {
        let c = Array::from_slice(&[1, 2, 3, -1, 1, 4], &[2, 3]);

        let result = norm(&c, None, &[0][..], None).unwrap();
        let expected = Array::from_slice(&[1.41421, 2.23607, 5.0], &[3]);
        assert!(result
            .all_close(&expected, None, None, None)
            .unwrap()
            .item::<bool>());
    }

    #[test]
    fn test_norm_axes() {
        let m = Array::from_iter(0..8, &[2, 2, 2]);

        let result = norm(&m, None, &[1, 2][..], None).unwrap();
        let expected = Array::from_slice(&[3.74166, 11.225], &[2]);
        assert!(result
            .all_close(&expected, None, None, None)
            .unwrap()
            .item::<bool>());
    }

    #[test]
    fn test_qr() {
        let a = Array::from_slice(&[2.0f32, 3.0, 1.0, 2.0], &[2, 2]);

        let (q, r) = qr_device(&a, StreamOrDevice::cpu()).unwrap();

        let q_expected = Array::from_slice(&[-0.894427, -0.447214, -0.447214, 0.894427], &[2, 2]);
        let r_expected = Array::from_slice(&[-2.23607, -3.57771, 0.0, 0.447214], &[2, 2]);

        assert!(q
            .all_close(&q_expected, None, None, None)
            .unwrap()
            .item::<bool>());
        assert!(r
            .all_close(&r_expected, None, None, None)
            .unwrap()
            .item::<bool>());
    }

    // The tests below are adapted from the c++ tests

    #[test]
    fn test_svd() {
        // eval_gpu is not implemented yet.
        let stream = StreamOrDevice::cpu();

        // 0D and 1D returns error
        let a = Array::from_float(0.0);
        assert!(svd_device(&a, &stream).is_err());

        let a = Array::from_slice(&[0.0, 1.0], &[2]);
        assert!(svd_device(&a, &stream).is_err());

        // Unsupported types returns error
        let a = Array::from_slice(&[0, 1], &[1, 2]);
        assert!(svd_device(&a, &stream).is_err());

        // TODO: wait for random
    }

    #[test]
    fn test_inv() {
        // eval_gpu is not implemented yet.
        let stream = StreamOrDevice::cpu();

        // 0D and 1D returns error
        let a = Array::from_float(0.0);
        assert!(inv_device(&a, &stream).is_err());

        let a = Array::from_slice(&[0.0, 1.0], &[2]);
        assert!(inv_device(&a, &stream).is_err());

        // Unsupported types returns error
        let a = Array::from_slice(&[1, 2, 3, 4, 5, 6], &[2, 3]);
        assert!(inv_device(&a, &stream).is_err());

        // TODO: wait for random
    }

    #[test]
    fn test_cholesky() {
        // eval_gpu is not implemented yet.
        let stream = StreamOrDevice::cpu();

        // 0D and 1D returns error
        let a = Array::from_float(0.0);
        assert!(cholesky_device(&a, None, &stream).is_err());

        let a = Array::from_slice(&[0.0, 1.0], &[2]);
        assert!(cholesky_device(&a, None, &stream).is_err());

        // Unsupported types returns error
        let a = Array::from_slice(&[0, 1, 1, 2], &[2, 2]);
        assert!(cholesky_device(&a, None, &stream).is_err());

        // Non-square returns error
        let a = Array::from_slice(&[1, 2, 3, 4, 5, 6], &[2, 3]);
        assert!(cholesky_device(&a, None, &stream).is_err());

        // TODO: wait for random
    }
}